Mechanical Behavior of Osteoporotic Bone at Sub-Lamellar Length Scales

نویسندگان

  • Ines Jimenez-Palomar
  • Anna Shipov
  • Ron Shahar
  • Asa H. Barber
چکیده

*Correspondence: Asa H. Barber , School of Engineering, University of Portsmouth, Portsmouth PO1 2UP, UK e-mail: [email protected] Osteoporosis is a disease known to promote bone fragility but the effect on the mechanical properties of bone material, which is independent of geometric effects, is particularly unclear. To address this problem, micro-beams of osteoporotic bone were prepared using focused ion beam microscopy and mechanically tested in compression using an atomic force microscope while observing them using in situ electron microscopy.This experimental approach was shown to be effective for measuring the subtle changes in the mechanical properties of bone material required to evaluate the effects of osteoporosis. Osteoporotic bone material was found to have lower elastic modulus and increased strain to failure when compared to healthy bone material, while the strength of osteoporotic and healthy bone was similar. Surprisingly, the increased strain to failure for osteoporotic bone material provided enhanced toughness relative to the control samples, suggesting that lowering of bone fragility due to osteoporosis is not defined by material performance. A mechanism is suggested based on these results and previous literature that indicates degradation of the organic material in osteoporosis bone is responsible for resultant mechanical properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation.

This study demonstrates a novel approach to characterizing hydrated bone's viscoelastic behavior at lamellar length scales using dynamic indentation techniques. We studied the submicron-level viscoelastic response of bone tissue from two different inbred mouse strains, A/J and B6, with known differences in whole bone and tissue-level mechanical properties. Our results show that bone having a hi...

متن کامل

Sub-lamellar microcracking and roles of canaliculi in human cortical bone.

Bone is a tough biological material. It is generally accepted that bone's toughness arises from its unique hierarchical structure, which in turn facilitates distributed microcracking prior to fracture. Yet, there has been limited progress on the detailed roles of the structural elements in the microcracking process. The present study examines the structure-microcracking relations at the lamella...

متن کامل

Orientation and size-dependent mechanical modulation within individual secondary osteons in cortical bone tissue.

Anisotropy is one of the most peculiar aspects of cortical bone mechanics; however, its anisotropic mechanical behaviour should be treated only with strict relationship to the length scale of investigation. In this study, we focus on quantifying the orientation and size dependence of the spatial mechanical modulation in individual secondary osteons of bovine cortical bone using nanoindentation....

متن کامل

Role of damage mechanics in nanoindentation of lamellar bone at multiple sizes: experiments and numerical modeling.

The aim of this paper is to show that damage mechanisms can account for the response of lamellar bone to nanoindentation tests, with particular regards to the decrease of indentation stiffness with increasing penetration depth and to the loss of contact stiffness during the unloading phase of the test. For this purpose, indentation experiments on bovine cortical bone samples along axial and tra...

متن کامل

P-181: Protective Role of Vitamin E As An Alternative Treatment for Ovariectomized Osteoporotic Rats

Background: Osteoporosis one of the postmenopausal symptoms is characterized by bone loss. There is a link between excessive reactive oxygen species (ROS) formation, estrogen deficiency due to cessation of ovarian function and bone loss. Free radicals are responsible for causing osteoblast apoptosis and reducing osteoblastogenesis in bone remodeling. Vitamin E is a potent antioxidant with the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015